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1 Introduction

Electricity market participants rely heavily on accurate price forecasts to make informed opera-
tional and strategic decisions. Reliable forecasts support power producers in optimizing generation
schedules, guide energy traders in formulating bidding strategies, and enable storage operators to
plan charging and discharging cycles effectively.

Although the findings of this paper are transferable to other liberalized electricity markets, the
focus lies on the German market. Electricity trading in Germany takes place across several market
segments, including the control reserve market, the day-ahead market, and the intraday market.
We focus in our analysis on the day-ahead market, as it represents the largest wholesale market
segment and plays a central role in price formation. In 2024, the day-ahead auction accounted for
291.4 TWh of traded electricity, compared to 91.2 TWh on the continuous intraday market and
10.6 TWh in the intraday auctions (EPEX 2025).

In the day-ahead auction, participants submit quarter-hourly bids and offers for the following day.
A market-clearing price is determined for each hour once bidding closes at 12:00, with results
published shortly after. While quarter-hourly products were introduced to the day-ahead market
in October 2025, this study focuses on 2024 data, when hourly products were the standard. This
market design underscores the importance of timely and reliable day-ahead price forecasts, which
are crucial for informed bidding and operational decision-making.

In recent years, the share of renewable energy in Germany’s generation mix has increased substan-
tially. While this transition supports decarbonization goals, it also introduces new challenges for
electricity price forecasting. The weather-dependent nature of wind and solar generation, such as
low output during calm or cloudy periods, leads to pronounced fluctuations in supply and, conse-
quently, higher price volatility. Understanding and quantifying these effects are essential for
improving forecast accuracy and market decision-making.

This paper compares three modeling approaches for forecasting day-ahead electricity prices: a
traditional statistical model and two machine learning models, a tree-based approach and a neural
network approach. Each model is evaluated under two training schemes: aggregated, where all 24
hourly prices are predicted jointly, and segregated, where individual models are trained for each
hour. Their predictive performance is systematically compared to assess which approach offers the
best balance between interpretability, economic value, and statistical accuracy.

The paper is structured as follows. Section 2 introduces the dataset and presents key descrip-
tive insights. Section 3 outlines the modeling approaches and evaluation metrics, while Section
4 analyzes the empirical results. To illustrate the practical relevance of forecasting accuracy, in
Section 5, we conduct a case study in which different price forecasting models are evaluated within
an illustrative battery energy storage system optimization framework. This analysis demonstrates
how forecasting performance can influence revenue potential. Section 6 concludes with a summary
and outlook.



2 Data

This section provides an overview of the dataset, key descriptive insights that inform the forecasting
models, and aims to understand the underlying behavior of the electricity price and its main drivers
(demand, wind, and solar generation), as these dynamics directly shape the predictive performance
and operational relevance of the models.

The data originates from ENTSO-E and covers two years of hourly day-ahead price observations
as well as forecasted wind, solar, and electricity demand for Germany between January 2023
and December 2024. This two-year period captures a range of market conditions, including high
renewable infeed phases and volatile price episodes, providing a representative basis for model
development and evaluation. To ensure temporal consistency, the dataset was carefully adjusted
for daylight saving time changes.

2.1 Endogenous Variable: DAA Electricity Price

Table 1 shows a summary statistic quantitatively describing some of the features of the applied data
set. The average day-ahead auction price during the observation period was 86.83 €/MWh, with
a median of 88.87 €/MWh. Prices typically fluctuated between 60 and 110 €/MWh, but extreme
events occasionally pushed values as low as -500 €/MWh or as high as 936 €/MWh. Such spikes
reflect the combined impact of renewable intermittency as well as market constraints and short-
term imbalances.

Looking at the hourly average price pattern (Figure 1) shows a clear intraday cycle with two notice-
able peaks, one in the morning around 8 a.m. and another one in the early evening around 8 p.m.,
driven by typical demand surges during these hours. Prices tend to be lowest during the night and
midday, which can be attributed to reduced demand combined with higher renewable generation,
particularly wind at night and solar during the day. This pattern highlights the need to account for
intraday seasonality in forecasting models.

The series also shows a clear weekly seasonality (Figure 2), with lower prices on weekends and
higher levels during weekdays. This reflects the recurring demand-supply cycle and highlights the
importance of incorporating temporal patterns in model design. In practice, such weekly effects
can significantly influence short-term trading strategies and storage optimization, underscoring the
value of precise temporal modeling.

86.83 50.91 -500.00 62.92 88.87 112.34 936.28

Table 1:
Descriptive
Statistics of the
Price Variable.



170

160 - —e— Average Price

Peak Load Hours

150

140

130

120

Average Price (€E/MWHh)

110

100

90 -

Figure 1:
80 | |

T T T T T T T T T T T T T T 1 Average Day-Ahead
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  pricefor Each Hour.

Hour

—— Hourly Price

—— 24-hour Moving Average
200 -

‘N" N\‘ " )‘,l l'i'U" ‘ l'm Wl ( “""““. "‘1 |
|

Figure 2:
~50 1 Day-Ahead Price
and 24-hour Moving

T T T T Average for the First
2023-07-12 2023-07-19 2023-07-26 2023-08-02 Two Months.

Date

Price (E/MWHh)

© 2026 | FORRS GmbH | Comparative Analysis of Machine Learning Models for Price Forecasting in the German Day-Ahead Market 5



2.2 Exogenous Variables: Wind, Solar, Load

For simplicity, we use only four different exogenous variables for our analysis. Table 2 summarizes
the key characteristics of the exogenous variables used in the analysis. Among them, onshore wind
generation exhibits the highest mean output (13.186 GW) and the largest variability, highlighting
its strong influence on market conditions. Offshore wind contributes less on average (2.78 GW)
but shows similar fluctuation patterns. Solar generation displays extreme variability, ranging from
zero at night to peaks above 48 GW, with a very low median of 0.225 GW. In contrast, system load
is comparatively stable, averaging around 53 GW within an interquartile range of roughly 45 GW
to 61 GW.

13.186 10.322 0.122 4.928 10.330 19.184 47.472
2.780 1.802 0.007 1.090 2.674 4.371 7.072

6.849 10.509 0 0] 0.225 10.908 48.454
53.099 9.126 30.893 45.604 52.836 60.628 74.042

The combination of highly variable renewable generation and relatively stable load indicates that
these factors are key drivers of short-term price volatility. To quantify their relationship with elec-
tricity prices, an OLS regression was estimated, using normalized (0-1 scaled) inputs for better
interpretability. The main results can be seen in Table 3.

84.22 0.65 129.18 0.000
-162.74 111 -146.08 0.000
-123.45 1.35 -91.45 0.000
138.60 112 124.24 0.000
-29.69 1.13 -26.22 0.000

All variables are statistically significant at the 1% level, confirming their strong link with electricity
prices. Higher renewable generation, both solar and wind, tends to reduce prices, while higher
load levels increase them. Offshore wind exerts a smaller but still significant price effect. With an
adjusted R? of 0.67, the model explains a substantial share of the observed price variation, validating
the inclusion of these exogenous variables in subsequent forecasting models.

Table 2:
Descriptive
Statistics for Wind,
Solar, and Load
Variables in GW.

Table 3:

OLS Regression
Results for the
Relationship
Between Electricity
Prices and
Normalized
Exogenous Drivers.



3 Methodologies

Throughout this section, we focus on a real-valued time series denoted as (Y)ien. The primary
objective is to provide predictions for each of the data points, represented as Y;. Each individual
prediction, Y;, is derived from N inputs from the corresponding t-th data point, denoted

Xt = (X1, . . ., X¢N)- These input features consist of exogenous variables, lagged values of those
exogenous variables, and lagged values of the endogenous series Y;.

To ensure realistic forecasting conditions, all models are evaluated on the out-of-sample period
covering the year 2024. For each day within this evaluation horizon, the model is recalibrated using
arolling-window approach. This setup mimics a real-world forecasting scenario in which models are
continuously updated as new data becomes available, thereby capturing the most recent market
dynamics and improving short-term adaptability.

3.1 DataPreparation

Before model training, the input data is prepared to ensure consistency across the entire observa-
tion period. As the dataset does not contain any missing values, no additional handling is required in
this regard. All timestamps are provided in Central European Time, including daylight saving time.
Finally, where applicable, lags of each variable are included to capture temporal dependence.

3.2 Training, Validation, and Testing Procedure

Buildingonthe prepared dataset, the forecasting framework employs a daily recalibration approach.
For each forecasted day, the preceding 360 days are used for training, while the forecasted day
serves as the test sample. For the machine learning methods, a separate validation set is created
by splitting the 360-day training period into two subsets, where the first 75% of the data is used
for training and the last 25% for the validation set. This enables the use of features such as early
stopping. The hyperparameters of both machine learning models were tuned only once using data
from the year 2023 and then kept fixed throughout the entire forecasting procedure. After each
forecast, the entire forecasting window is shifted forward by one day, continuing until the end of the
dataset on December 31, 2024.

3.3 Models
3.3.1 Statistical Model with Exogenous Inputs (Stat-EX)

This model extends classical time series analysis by combining autoregressive, moving average, and
seasonal components with external regressors. It models how current values depend on past obser-
vations and forecast errors, filters out random noise, and captures recurring seasonal patterns such
as weekly or yearly cycles. External drivers can be included as explanatory variables, making the
model well-suited for forecasting tasks where both historical behavior and external influences
matter. Despite its statistical complexity, the model remains interpretable and transparent for
decision makers.



3.3.2 Decision Tree Based Model (Tree-ENS)

Decision trees are among the most intuitive machine learning models. They split data into successive
decision rules, forming a tree-like structure that can be easily visualized and interpreted. Modern
ensemble methods build upon this foundation by combining various such trees to improve predic-
tive performance. One of the most effective approaches is gradient boosting (Friedman 2001),
which sequentially combines many shallow trees, each one correcting the errors of the previous
ensemble, to form a strong predictive model.

Figure 3 illustrates a simplified decision tree structure similar to those used in our forecasting
framework. Each internal node represents a decision based on an input variable, such as solar gener-
ation, wind power, or recent price levels, while each leaf node corresponds to a predicted day-ahead
electricity price. Although the actual model comprises hundreds of such trees, this schematic
example highlights the interpretability and logical flow of tree-based methods
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3.3.3 Feed-Forward Neural Network (FFNN)

The network architecture illustrated in Figure 4 follows a feed-forward architecture consisting
of an input layer, a hidden layer, and an output layer. The input layer receives a vector of features
Xt = (Xt 1, Xt 2,- . ., X¢ N), Which are first standardized using a MinMax scaler before being compared with
a set of representative centers in the hidden layer. Each hidden unit center ¢; determines the region
of input space to which it is most sensitive, enabling the model to represent complex and nonlinear
relationships between the inputs and the target variable. Throughout the process of determining
the centers, the number of hidden neurons is determined automatically. The output layer then
aggregates these values through a weighted combination to produce the final prediction ¥;. The
forward-only flow of information allows the model to be trained efficiently while retaining flexibility
to approximate highly nonlinear mappings. Recurrent neural networks specifically designed for
sequential data, such as LSTMs, are not the subject of this paper, as the FFNN architecture demon-
strated worse performance in our forecasting experiments and is less computationally demanding
than the aforementioned.

Figure 3:
Schematic
Illustration of a
Decision Tree,
Showing Exemplary
Splits Based on
Solar Generation,
Wind Power,

and Past Price
Information.
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3.4 Model Characteristics

Table 4 shows a summary of important characteristics. Both the sequential learning process of
gradient boosting in Subsubsection 3.3.2 and the localized responses in Subsubsection 3.3.3 are
particularly valuable when system behavior is highly non-linear and cannot be adequately captured
by simpler statistical approaches. Compared to the Tree-ENS, the feed-forward neural network
model offers greater flexibility in capturing complex interactions seen in the price data in Subsec-
tion 2.1. However, it is also computationally demanding and the least interpretable.

3.5 Segregated vs Aggregated

To assess the effect of data granularity on model performance, a segregated and an aggregated
setup are implemented as two alternative training approaches.

In the segregated approach, each product is modeled separately to account for its distinct charac-
teristics. Hyperparameters are determined individually for each product, and the remaining model
parameters are trained exclusively on the corresponding subset of data. This results in specialized
models tailored to each product’s specific dynamics, but may increase the risk of overfitting due to
the limited number of observations per model.

Incontrast, the aggregated approach combines all product datainto a single, unified training dataset.
Here, hyperparameters are optimized once for the complete dataset, and the remaining parameters
are trained jointly on all available observations, effectively increasing the data volume by a factor
of 24 compared to the segregated case. This produces smoother and more generalized parameter
estimates that are identical across products, improving robustness but potentially reducing the
model’s ability to capture product-specific patterns.

Figure 4:

Structure of a
Feed-Forward
Neural Network.
Each Hidden Node
Applies a Localized
Activation Function
Centered at ¢jto
Transform the Input.

Table 4:
Summary of Model
Characteristics.



The comparison between these two strategies highlights the trade-off between model specializa-
tion and generalization. Segregated models can better adapt to local variations, whereas aggre-
gated models benefit from broader data coverage and reduced variance.

3.6 Performance Measures

The performance of all models is evaluated on out-of-sample data from the year 2024. Three
complementary performance measures are employed: the Root Mean Squared Error (RMSE), the
Mean Absolute Error (MAE), and the Forecasting Efficiency Ratio (FER). All models are trained using
the Mean Squared Error (MSE) loss, which directly corresponds to the RMSE metric, while MAE and
FER are used only as additional evaluation measures.

The RMSE and MAE are standard statistical metrics that quantify the accuracy of most time series
forecasts, and are valid measurements in the case of German electricity prices. RMSE penalizes
larger forecast deviations more strongly, making it sensitive to outliers, while MAE provides an
interpretable measure of the average absolute forecast error. Together, they give a balanced view
of each model’s predictive accuracy.

In addition to standard statistical evaluation, we assess the quality of our forecasts through a BESS
case study. Specifically, we measure how efficiently the forecasts translate into revenue when
used by a BESS asset in day-ahead electricity market bidding. This is done by comparing the actual
revenues achieved using our forecasts to the maximum possible revenues that could be obtained
with perfect foresight, hence calculating FER.



MAE

4 Econometric Analysis

This section compares the forecasting performance of the models introduced in Section 3, evalu-
ating both aggregated and segregated approaches in terms of overall and product-specific accuracy.

Segregated Aggregated
35.31 23.50 27.94 18.08
31.39 18.30 27.54 17.05
31.33 16.12 27.16 16.02

Table 5 shows that aggregated models consistently outperform segregated models across all model
types. Stat-EX achieves the lowest errors overall, followed by FFNN, while the Tree-ENS performs
the weakest. Similar patterns are observed on the training and validation sets. The improved perfor-
mance of aggregated models is likely due to their training on larger and more diverse datasets, which
reduces the potential of overfitting and improves generalization.

Figure 5illustrates the MAE for each product. Forecast errors are generally lowest during nighttime
hours (22:00-06:00) and highest during late afternoon (16:00-20:00), which stems from the high
volatility of solar energy production during daytime. Aggregated and segregated Stat-EX models
consistently achieve the best hourly performance, while FFNN performs competitively at night.
Both Tree-ENS models show the weakest performance, with the segregated variant performing
worst.

These results suggest that leveraging the strengths of different models for different products could
improve overall accuracy. For instance, using aggregated Stat-EX forecasts for early-morning hours
and segregated FFNN forecasts for late-night hours may further enhance predictive performance.
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Table 5:

Average Test

RMSE and MAE

of Segregated and
Aggregated Models.

Figure 5:

Hourly MAE
Comparison of
Aggregated vs.
Segregated Models.



5 UseCase

Toevaluatethe practical relevance of theforecastingmodels, we apply the publicly available FlexIndex
framework (FlexIndex 2025) as an application-oriented benchmark of forecast performance. Unlike
conventional error metrics such as RMSE or MAE, this approach assesses the economic value of a
forecast by simulating its performance in actual trading decisions. Specifically, it estimates the profit
that a BESS could obtain in the day-ahead market when bidding based on forecasted price trajecto-
ries and compares it to the hypothetical revenues that would be achieved under perfect foresight.

It maximizes daily trading revenues subject to standard operational constraints on energy capacity,
power limits, and state-of-charge dynamics. The optimized schedule is then evaluated ex post using
the realized market prices to obtain the actual profit, thereby linking forecast accuracy directly to
economic outcomes.

The efficiency ratio quantifies the economic impact of the forecast quality as the ratio between the
revenues achieved and with forecast-based trading and those attainable under perfect foresight:

I-Iforecast
FER= —— * 100%.

I_lperfect

Avalue of FER=100% represents perfect predictive performance, while a lower values indicate effi-
ciency losses caused by forecast errors.

The optimization is repeated for each day of 2024 using the identical model and battery specification.
Aggregating the resulting daily profits yields annual efficiency ratios that quantify how effectively
each forecasting model translates predictive information into market value, providing a practically
interpretable measure of forecast performance. As shown in Table 6, the Stat-EX Aggregated model
achieves the highest annual revenues among all evaluated forecasting methods, corresponding to
an efficiency ratio of 95% relative to the perfect-foresight benchmark. This indicates that the model
captures market dynamics with high accuracy, enabling trading decisions that closely approximate
the theoretical optimum.

In real-life BESS trading, computational efficiency can be key, usually depending on the design of
the market. However, for the day-ahead market as an auction market, speed can be considered less
relevant. Since price prediction is a recurring process, it is necessary to regularly update the hyper-
parameters using systematic tuning methods such as grid search, random search, or Bayesian opti-
mization.

100
95
92
90
86
86
84

Table 6:
Comparison of
Model Performance
Based on Efficiency
Ratios in 2024.



6 Conclusion

The objective of this study was to forecast DAA market prices to support BESS operations and deci-
sion-making. Several model families were evaluated, including classical statistical, neural-network,
and tree-based models, each tested in both aggregated and segregated setups.

From an econometric perspective, the results were consistent and conclusive. The aggregated
models clearly outperformed segregated models across all configurations. This advantage likely
stems from the fact that aggregated approaches are trained on larger and more diverse datasets,
which reduces overfitting and enhances generalization. Among the individual models, Stat-EX
achieved the lowest overall errors, followed by the FFNN, while Tree-ENS showed comparatively
weaker performance.

Furthermore, the case study demonstrates that forecasting accuracy has a direct and measur-
able impact on the economic value of trading decisions. Among all evaluated models, the aggre-
gated Stat-EX model achieved the highest performance in terms of the efficiency ratio derived
from the battery trading simulation. Aggregated model variants consistently outperformed their
non-aggregated counterparts, confirming that the combination of multiple information sources
or model components leads to more robust and economically valuable predictions. The second-
best performing model in terms of efficiency ratio, aggregated FFNN, achieved comparably strong
results, further supporting the conclusion that ensemble and aggregation strategies demonstrate
both predictive accuracy and operational profitability. In summary, the results highlight the impor-
tance of evaluating forecast models not only through statistical error metrics but also through their
realized market performance when applied in realistic trading scenarios.

Looking ahead, several approaches can further enhance model performance and practical
relevance. Incorporating additional explanatory variables could improve predictive precision, such
as renewable generation forecasts, cross-border flows, or demand indicators. Furthermore, model
combinations or adaptive ensemble methods may help leverage complementary model strengths
while maintaining computational efficiency.
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